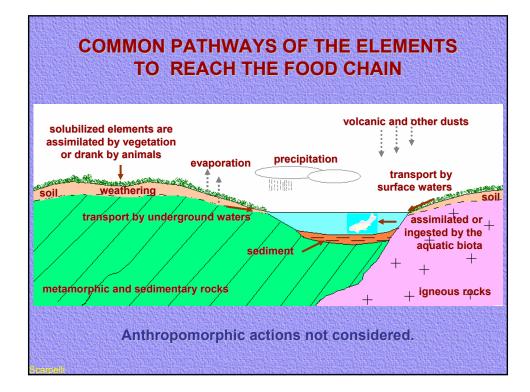
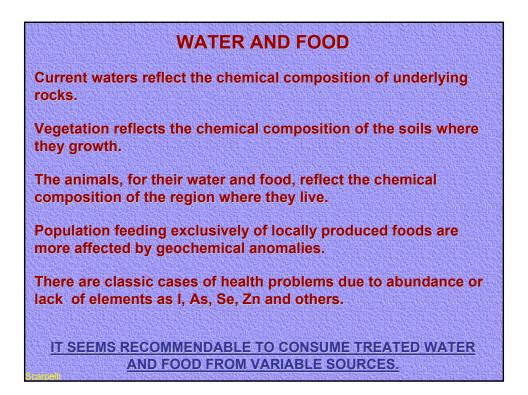
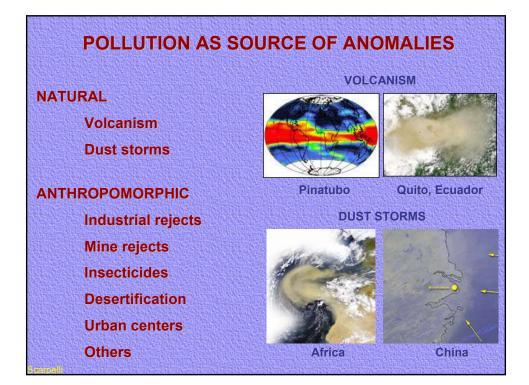
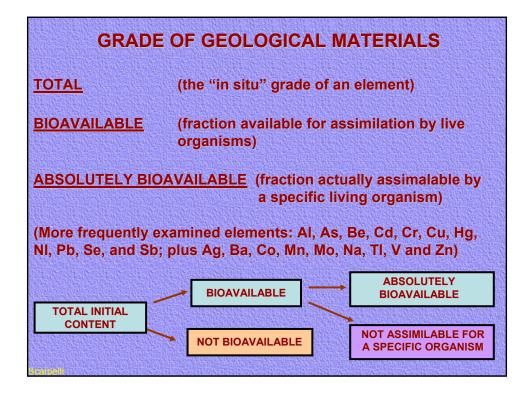


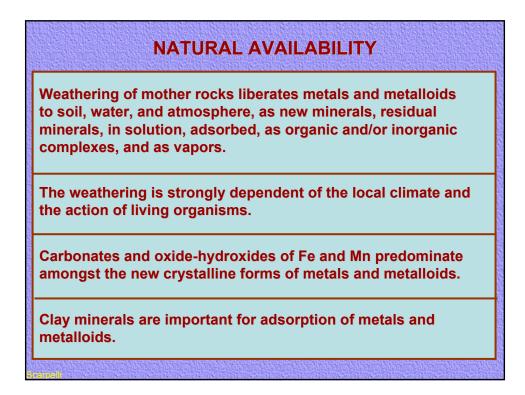
	Т	Carlo Corro Strand Corro Strand Dies	ITIAL ELE S AND VE)N	
<i>国的北方和国际</i> 国际省内部位	TO ALL	TO SEVERAL CLASSES	TO SOME CLASSES	TO SOME SPECIES	POSSIBLY ESSEN- TIAL	
	H, C, N	Si, V, Co	B, F, Cr	Li, Al, Ni	Rb, Sn	
	O, Na, Mg	Mo, I	Br	Sr, Ba		
	P, S, CI					
	K, Ca, Mn					
	Fe, Cu, Zn, Se					
Scar		ELEMENTS		TRACE ELE	EMENTS	FAQ

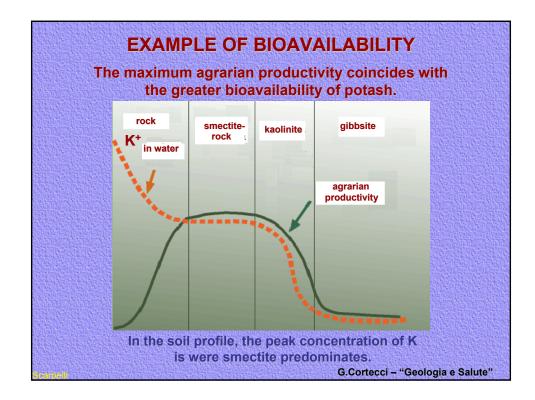



	ACTION OF MACRONUTRIENTS
Са	Strengthening of bones and teeth; muscular activity; blood coagulation; cellular permeability. Excess may originate liver and bladder stones and renal insufficiency.
CI	Maintenance of blood pressure; vital as acid constituent during digestion.
K	Maintenance of corporeal fluids; muscular contractions and nervous impulses.
Mg	In bones, together with Ca; activation of muscular contractions; body temperature control; component of several enzymes.
Na	Active in hydrosaline equilibrium; transmission of nervous impulses and transport of metabolites.
Р	Bone constituent as apatite; participates of most body chemical reactions. Excess turns brittle hairs and bones.
Boarcelli	G.Cortecci – "Geologia e Salute" and others F.R. Siegel – "Environmental Geochemistry" O.Selinus e A.Frank – "Medical Geology"


Со	Active in vitamin B_{12} and in chemical reactions. Deficiency causes anemia. Excess causes hearth failures.
Cr	Needed for metabolism of sugar. Deficiency may cause diabetes, intolerance to glycose etc. Excess may result in renal failures. Excess of Cr ⁶ is cancerigenous.
Cu	Component of oxidizing enzymes during metabolism of energy sources; active in the synthesis of hemoglobin, in keratization and in skin and hair pigments. Deficiency leads to osteoporosis and low number of white blood cells.
F	Give strength to teeth and bones, avoiding dental caries and osteoporosis. Excess causes fluorosis of teeth and bones.
I	Required by thyroidal hormones, temperature control, body growth, reproduction etc. Deficiency causes abnormal growth of the thyroid.
mali	G.Cortecci – "Geologia e Salute" and ot F.R. Siegel – "Environmental Geochemi O.Selinus e A.Frank – "Medical Geol


Fe	Essential component of hemoglobin e enzymatic complexes required for energy generation and immunological system.
Mn	Promotion of growth and development; cellular functions; in bones and cartilages; takes part in metabolic reactions. Excess leads to excess of blood. May cause neurological diseases if inhaled to the lungs.
Se	Prevention of vascular and other diseases; neutralizes cells oxidation and aging actions of free radicals. Excess turns brittle nails and hair.
Zn	Occur in all tissues, mostly in bones, muscles and skin; active in the immunological system; regulates body growth; protects the liver. Deficiency reduces body growth.


AI	Non essential, albeit its crustal abundance. Interferes with and reduces assimilation of phosphorus and fluor, causing bone demineralization. Suspect of influencing Alzheimer disease.
As	Essential (?). Excess is carcinogenic.
Be	Non essential. Toxic when inhaled as dust.
Cd	Non essential. Toxic and carcinogenic. Interferes with Zn, inhibiting the normal assimilation of Zn.
Hg	Non essential. Poisonous.
Ni	Essential to vegetables, possibly also to animals.
Pb	Non essential and toxic.
Sb	Non essential.
Sn	Non essential.
Ti	Non essential.
V	Essential. Extends teeth life. Excess may cause lung diseases.

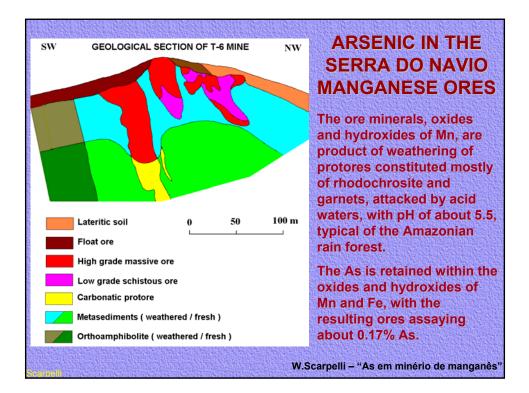


	BIOAVAILABILITY, OR "METALS RILIZATION", ON LATERIZATION
	Zone A – yellow clays, rich in SiO ₂ . Leached of Mg, Ca, K, Na, Cu, Zn and others.
	Zone B – clayous and concretional, rich in Al and Fe, with Mn, As, Co, Se, Zn, and Ni retained within limonite. Leached of Mg, Ca, K, Na and others.
	Zone C – argillaceous saprolite, with gradual physical and chemical transition to the fresh rock below. Grades of Mg, Ca, K, Na, Cu, Ni and others increase towards the base.
	Water with dissolved metals accumulate towards the base.
	Fresh rock.

otential, the biota ogy, temperature, etween the
Pb – oxalate Pb – carbonate Pb – acetate Pb – sulfate Pb – sulfide
vailable in acid
o ⁶⁻ , CrO ⁶⁻) are more

Мо	Cu	Increase in soil pH increases the mobility of Mo
WO	Cu	Increase in soil pH increases the mobility of Mo in relation to the mobility of Cu, reducing the capacity of the vegetation to assimilate Cu, with bad results for animals and humans.
Cu	Fe	The presence of Cu, and possibly of Ni, is necessary for proper action of Fe in metabolism.
P ₂ O ₅	Zn	Increase of P_2O_5 in soil reduces the capacity of vegetation to assimilate Zn, with detrimental results for animals and humans.
Zn	Cd	Increase of Zn reduces the capacity to assimilate Zn by vegetation, animals and humans.
S	Se	The use of S-rich fertilizers reduces the capacity of vegetation for assimilation of Se from soil, with bad effects for animals and humans.

TOXICITY – BRAZILIAN NORMS

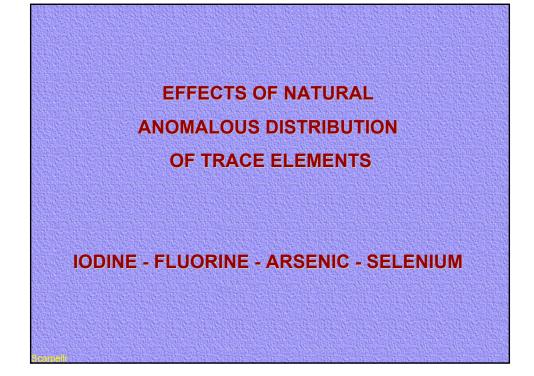

SOLUBILIZATION TEST NORM ABNT – NBR 10006

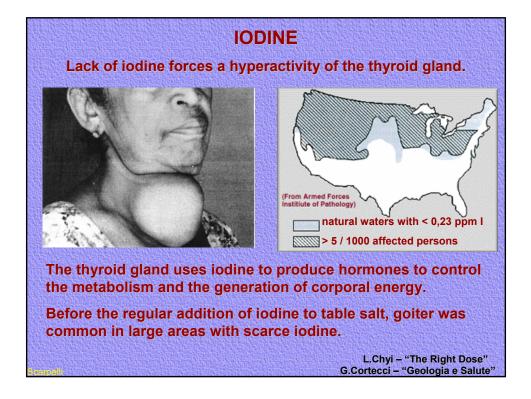
Test in neutral solution, ph 7.0. Test in duplicate, each with 100 g of sample. Permanence time of 7 days after strong initial agitation. Final solutions diluted to 400 ml with deionized water. Assaying for the grades of the solution.

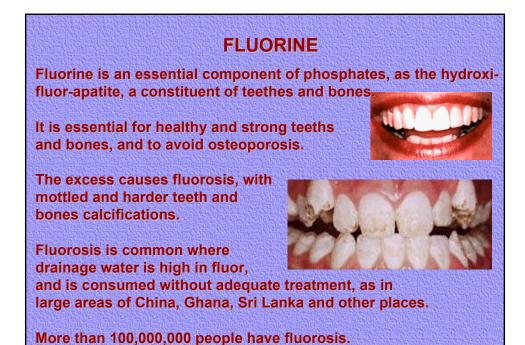
LEACHING TEST NORM ABNT – NBR 10005

Test in acid water, with acetic acid 0.5 N. Continual agitation of 50 g sample, at pH 5.0 +/- 0,2. Minimal period of 25 hours. Acidity is maintained with additions of acetic acid. Final solution is diluted to 800 ml with deionized water. Assaying for the grades of the solution.

WATER FOR	< 0.010 mg/L	Ministério da Saúde,
HUMAN CONSUMPTION	(before 2000 was <0.050 mg/L)	Decree 1469/GM, Art. 14, of 29.12.2000
SUBSOIL WATER	there is no official limit	CETESB-SP uses grade of potable water
DISCHARGE IN NATURAL DRAINAGE	< 0.500 mg/L	CONAMA, Resolution20/1986
INERT PRODUCT	< 0.050 mg/L in solubilization test	ABNT, Norms NBR-10004 e 10006
NON INERT PRODUCT	< 5.000 mg/L in leaching test >0.050 mg/L in solubilization test	ABNT , Norms NBR-10004, 10005 e 10006
TOXIC PRODUCT	> 5.000 mg/L in leaching test	ABNT, Norms NBR-10004 e 10005




Ore	Samples ne natural grades			LEACHING TESTS					SOLUBILIZATION TESTS				
sam- ples				1000	A	s	A		でで	Α	s	-	As
pies	% Mn	% Fe	ppm As		Sam- ple mg	solu- tion mg/L	mg	hed %		Sam- ple mg	solu- tion mg/L	mg	ched %
G36	26	15	1,516		76	0.01	0.01	0.01		152	0.01	0.04	0.003
B30	29	15	1,364	(La Car	68	0.01	0.01	0.01		136	0.01	0.04	0.003
M30	30	14	1,558		78	0.01	0.01	0.01		156	0.01	0.04	0.003
M28	29	13	1,499	1000	75	0.01	0.01	0.01		150	0.01	0.04	0.003
M26	26	14	1,549		77	0.01	0.01	0.01		155	0.01	0.04	0.003
M20	25	13	1,356		6 8	0.01	0.01	0.01		136	0.01	0.04	0.003
Carb	17	5	1,415		71	0.07	0.06	0.08	1014	142	0.47	0.19	0.133

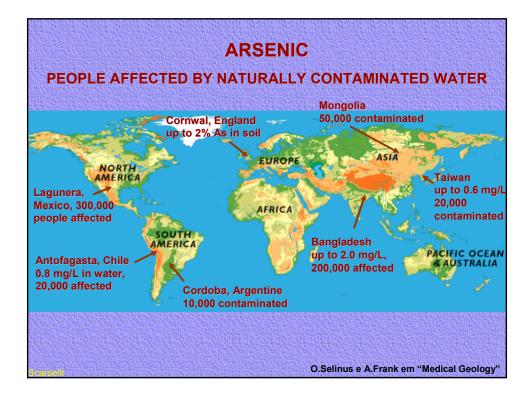

		THE ELEMEN
ELEMENT	LESS TOXIC	MORE TOXIC
As	As ³	As ⁵ (as arsenate)
	organic	inorganic
Cr	Cr ³	Cr ⁶ (as chromate)
Мо	Mo ²	Mo ⁶ (as molibdate)

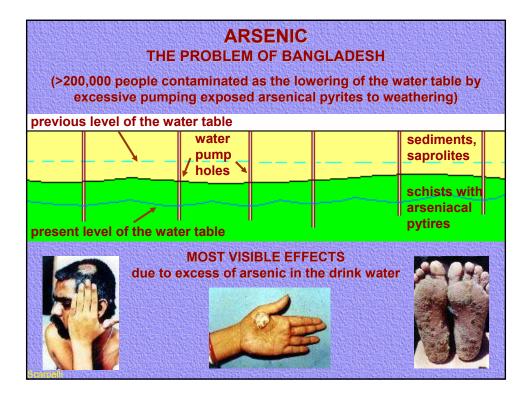
<text><text><text><text><text>

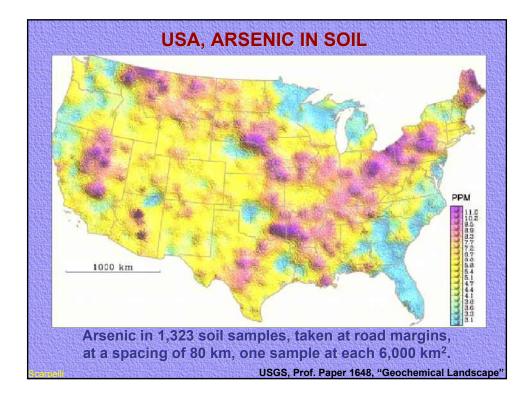
Incorporating Bioavailability – UG-2041-ENV"

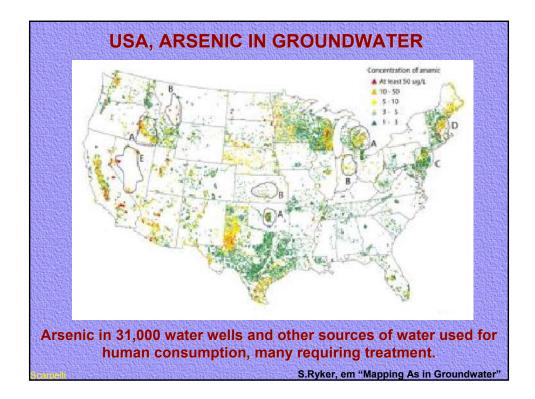
<section-header><section-header>

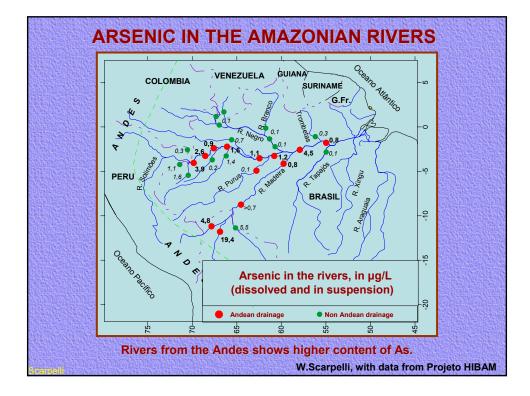
ARSENIC

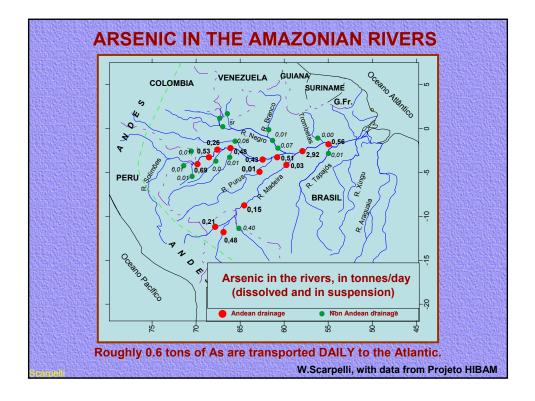

As⁵⁺ is more toxic than As³⁺ and inorganic (salt As) is more harmful than inorganic (methilated As).

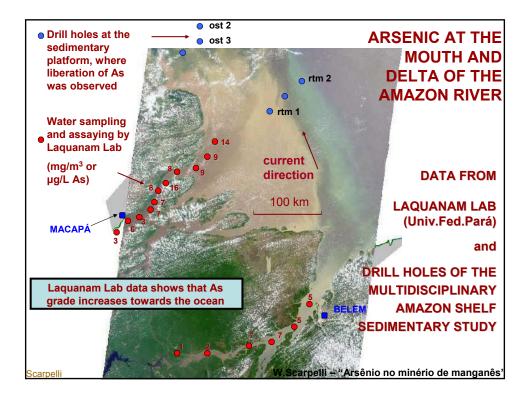

When ingested in small doses, organic As is eliminated with urine. The excess could be fixed in vital organs, from where it could also be eliminated, as long as the excessive ingestion is not continued.

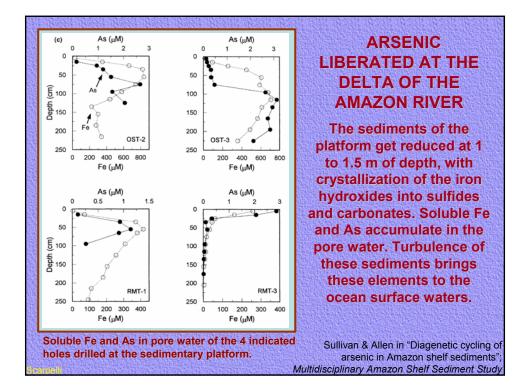

Inorganic As fixes itself easier in the organism than inorganic As, although part of it is transformed into inorganic by methilation.

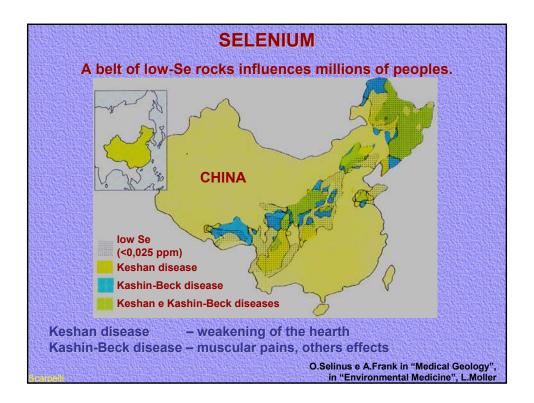

Toxic effects appear when As is ingested in excess for long periods, resulting in cancer, cutaneous malignancies, etc.

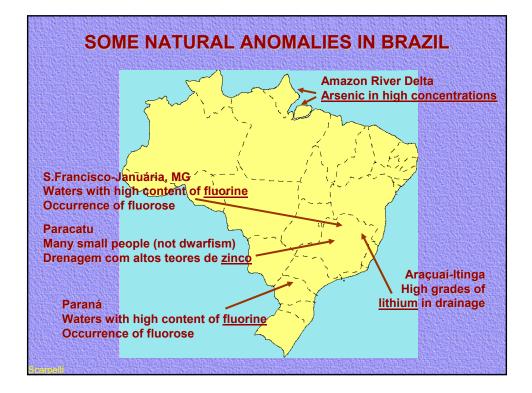

In Chile, Argentine, Mexico, India, and other countries, where there are sites with anomalously high concentration of As in the water, the population that drinks that water presents high values of As in blood, hair, nails, and body organs.

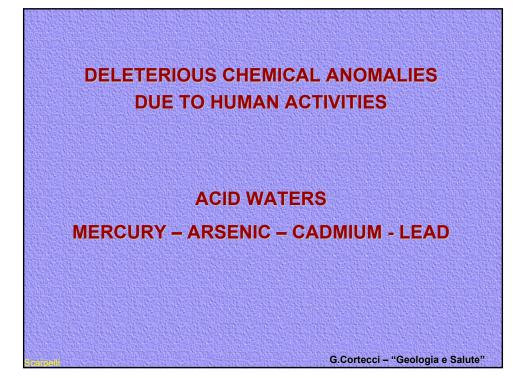


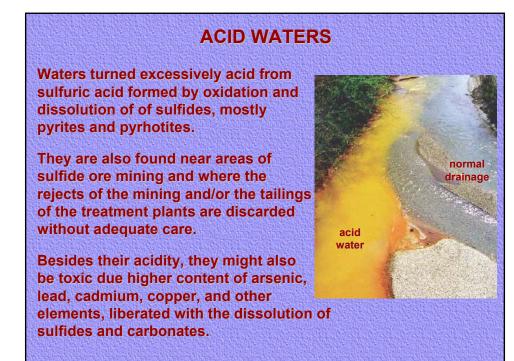


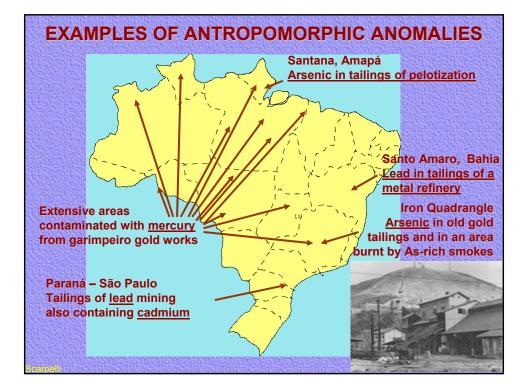


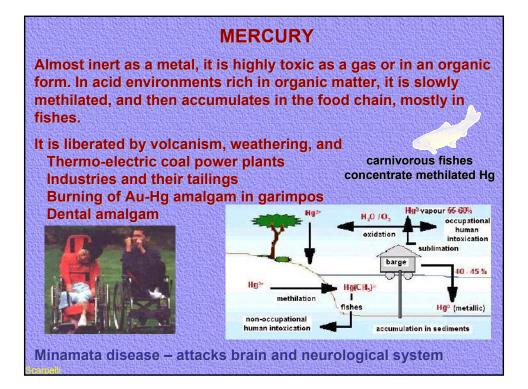




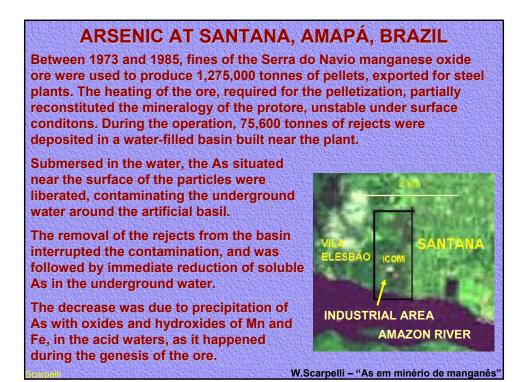


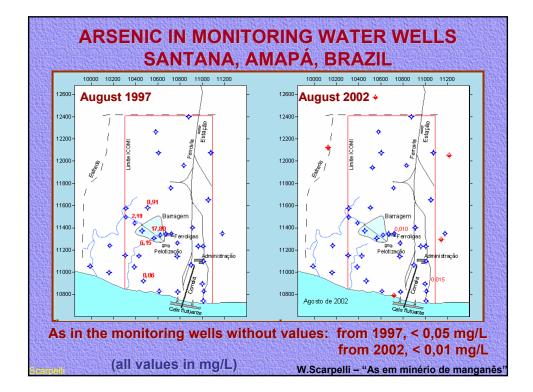



HEAVY WATERS


In Europe, it was noted that the incidence of sudden earth failures is lower where people consumes heavy waters. These are waters rich in dissolved carbonates. The effect is greater where the ratio Mg:Ca is greater.

G.Cortecci - "Geologia e Salute"





EXAMPLE OF MERCURY CONTAMINATION IN BRAZILIAN GARIMPEIRO AREAS

Normal values in hair, according to the OMS:	<u>1 to 2 ppb</u>
At Poconé, MT, outside the garimpo:	0.3 to 3 ppb
At Poconé, in the garimpo: (34 ppb after 16 years burning Au-Hg amalgam)	1.3 to 34 ppb
At Cumaru, PA, maximum observed:	14 ppb
At Madeira River, RO, maximum observed:	97 ppb
At Rainha, Tapajos River, maximum observed:	34 ppb
At São Luiz do Tapajós, maximum observed:	48 ppb
At Barreiras, Tapajós River, maximum observed:	71 ppb
At Paraná Mirim, Tapajós River, maximum observ	ved: 15 ppb
F Noqueira et alli – "Mercúri	o total em Poconé MT

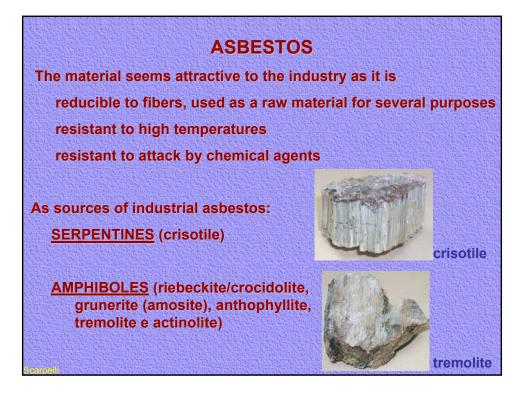
F.Nogueira et alli. – "Mercúrio total em Poconé, MT" R.C.Villas Boas et alli. – "Mercury in the Tapajós Basin"

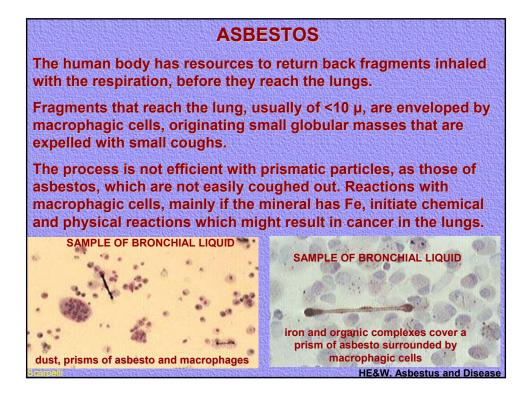
<u>Cadmium</u>	is present in soil, vegetation and water usually originates from Pb, Zn, and Cu sulfides disseminates via water and air concentrates in vegetation and animals liberated from tailings, rejects and industries batteries, burning of coal and cigarettes causes softening and weakening of bones causes osteoporosis (competing with calcium)			
<u>Lead</u>	industry and mining rejects very wide dispersion, due to intensive use quite disseminated near cities causes saturnism and other brain diseases			

DELETERIOUS PHYSICAL INFLUENCE FROM GEOLOGICAL MATERIALS

- Silica dust in the lungs - silicosis

(occur essentially where there is a large quantity of fresh angular fragments of silica, recently formed)


- Manganese dust - attack to the nervous system


(it is rare, but possible, where there is abundance of manganese dust and no ventilation)

- Asbestos

- Radon - radioactive gas

- Other radioactive elements

ASBESTOS

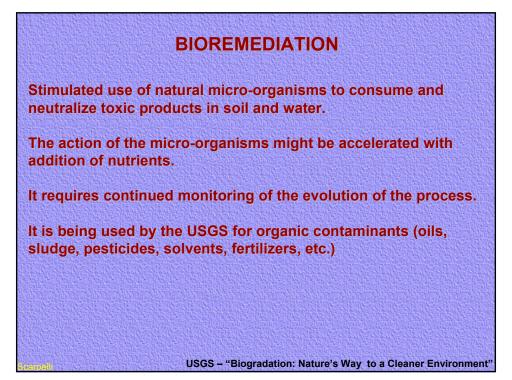
Serpentines are less aggressive than amphiboles, possibly because they contain less iron and are more flexible.

The incidence of asbestosis is perceptible essentially with workers of mines and industries which manipulate with large quantities of asbestos, <u>mainly where they are smokers</u>.

Cancer appears years after the ingestion of the fibers in the lungs, <u>mainly with smokers</u>.

			Uranium	238U	4.5*10.9 years	RADON
	α	+	* Radium	226Ra	1,602 years	Chain of the radio- isotopes formed with
	α	+	<mark>Radon</mark> ↓	222Rn	3.8 days	the transformation of U^{238} to Pb ²⁰⁶ , with the
日本	α	+	Polonium	218Po	3 minutes	intermediate
	α	+	↓ Lead	214Pb	27 minutes	elements and their half-lifes.
	βγ	+	↓ Bismuth	214Bi	20 minutes	The capacity of penetration increase
	βγ	+	Polonium	214Po	<1 seconds	from the α to the γ
	α	+	↓ Lead	210Pb	21 years	particles. The ionization of the
	β	+	* Bismuth	210Bi	5 days	α particles is greater than that of the y
	β	+	[↓] Polonium	210Po	138 days	particles.
Scaro	_{elli} α	+	↓ Lead	206Pb	stable	M.Svartengren – "Radon, a great health risk", in Environmental Medicine, L.Moller

RADON


Radioactive gas, intermediate in the transformation of U²³⁸ into Pb²⁰⁶, during which there are solid radioactive phases and intense emission of alfa, beta and gamma rays.

It is found in soil, and in surface and underground waters, in areas of granites, gneisses, alkaline rocks, shales and other silicatic rocks, essentially those that contain phosphates.

The gas form of radon allows for its inhalation with the respiration and ingestion with drinking water.

It represents a substantial risk in underground mines where there is uranium, in this case requiring strong ventilation.

In cold areas, where the houses are closed to preserve the heat, radon might penetrate from beneath through small cracks in the floor. That justifies the building of a open basement under the house floors. The risk is smaller in well ventilated environments.

